3.181 \(\int \frac {\sqrt {2+b x^2}}{\sqrt {3+d x^2}} \, dx\)

Optimal. Leaf size=182 \[ \frac {\sqrt {2} \sqrt {b x^2+2} \operatorname {EllipticF}\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {3}}\right ),1-\frac {3 b}{2 d}\right )}{\sqrt {d} \sqrt {d x^2+3} \sqrt {\frac {b x^2+2}{d x^2+3}}}+\frac {x \sqrt {b x^2+2}}{\sqrt {d x^2+3}}-\frac {\sqrt {2} \sqrt {b x^2+2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {3}}\right )|1-\frac {3 b}{2 d}\right )}{\sqrt {d} \sqrt {d x^2+3} \sqrt {\frac {b x^2+2}{d x^2+3}}} \]

[Out]

x*(b*x^2+2)^(1/2)/(d*x^2+3)^(1/2)-(1/(3*d*x^2+9))^(1/2)*(3*d*x^2+9)^(1/2)*EllipticE(x*d^(1/2)*3^(1/2)/(3*d*x^2
+9)^(1/2),1/2*(4-6*b/d)^(1/2))*2^(1/2)*(b*x^2+2)^(1/2)/d^(1/2)/((b*x^2+2)/(d*x^2+3))^(1/2)/(d*x^2+3)^(1/2)+(1/
(3*d*x^2+9))^(1/2)*(3*d*x^2+9)^(1/2)*EllipticF(x*d^(1/2)*3^(1/2)/(3*d*x^2+9)^(1/2),1/2*(4-6*b/d)^(1/2))*2^(1/2
)*(b*x^2+2)^(1/2)/d^(1/2)/((b*x^2+2)/(d*x^2+3))^(1/2)/(d*x^2+3)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 182, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {422, 418, 492, 411} \[ \frac {x \sqrt {b x^2+2}}{\sqrt {d x^2+3}}+\frac {\sqrt {2} \sqrt {b x^2+2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {3}}\right )|1-\frac {3 b}{2 d}\right )}{\sqrt {d} \sqrt {d x^2+3} \sqrt {\frac {b x^2+2}{d x^2+3}}}-\frac {\sqrt {2} \sqrt {b x^2+2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {3}}\right )|1-\frac {3 b}{2 d}\right )}{\sqrt {d} \sqrt {d x^2+3} \sqrt {\frac {b x^2+2}{d x^2+3}}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[2 + b*x^2]/Sqrt[3 + d*x^2],x]

[Out]

(x*Sqrt[2 + b*x^2])/Sqrt[3 + d*x^2] - (Sqrt[2]*Sqrt[2 + b*x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[3]], 1 - (3*b
)/(2*d)])/(Sqrt[d]*Sqrt[(2 + b*x^2)/(3 + d*x^2)]*Sqrt[3 + d*x^2]) + (Sqrt[2]*Sqrt[2 + b*x^2]*EllipticF[ArcTan[
(Sqrt[d]*x)/Sqrt[3]], 1 - (3*b)/(2*d)])/(Sqrt[d]*Sqrt[(2 + b*x^2)/(3 + d*x^2)]*Sqrt[3 + d*x^2])

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[a, Int[1/(Sqrt[a + b*x^2]*Sqrt[c +
d*x^2]), x], x] + Dist[b, Int[x^2/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && PosQ[
d/c] && PosQ[b/a]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rubi steps

\begin {align*} \int \frac {\sqrt {2+b x^2}}{\sqrt {3+d x^2}} \, dx &=2 \int \frac {1}{\sqrt {2+b x^2} \sqrt {3+d x^2}} \, dx+b \int \frac {x^2}{\sqrt {2+b x^2} \sqrt {3+d x^2}} \, dx\\ &=\frac {x \sqrt {2+b x^2}}{\sqrt {3+d x^2}}+\frac {\sqrt {2} \sqrt {2+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {3}}\right )|1-\frac {3 b}{2 d}\right )}{\sqrt {d} \sqrt {\frac {2+b x^2}{3+d x^2}} \sqrt {3+d x^2}}-3 \int \frac {\sqrt {2+b x^2}}{\left (3+d x^2\right )^{3/2}} \, dx\\ &=\frac {x \sqrt {2+b x^2}}{\sqrt {3+d x^2}}-\frac {\sqrt {2} \sqrt {2+b x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {3}}\right )|1-\frac {3 b}{2 d}\right )}{\sqrt {d} \sqrt {\frac {2+b x^2}{3+d x^2}} \sqrt {3+d x^2}}+\frac {\sqrt {2} \sqrt {2+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {3}}\right )|1-\frac {3 b}{2 d}\right )}{\sqrt {d} \sqrt {\frac {2+b x^2}{3+d x^2}} \sqrt {3+d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 37, normalized size = 0.20 \[ \frac {\sqrt {2} E\left (\sin ^{-1}\left (\frac {\sqrt {-d} x}{\sqrt {3}}\right )|\frac {3 b}{2 d}\right )}{\sqrt {-d}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[2 + b*x^2]/Sqrt[3 + d*x^2],x]

[Out]

(Sqrt[2]*EllipticE[ArcSin[(Sqrt[-d]*x)/Sqrt[3]], (3*b)/(2*d)])/Sqrt[-d]

________________________________________________________________________________________

fricas [F]  time = 0.59, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {b x^{2} + 2}}{\sqrt {d x^{2} + 3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+2)^(1/2)/(d*x^2+3)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^2 + 2)/sqrt(d*x^2 + 3), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {b x^{2} + 2}}{\sqrt {d x^{2} + 3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+2)^(1/2)/(d*x^2+3)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*x^2 + 2)/sqrt(d*x^2 + 3), x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 37, normalized size = 0.20 \[ \frac {\sqrt {2}\, \EllipticE \left (\frac {\sqrt {3}\, \sqrt {-d}\, x}{3}, \frac {\sqrt {2}\, \sqrt {3}\, \sqrt {\frac {b}{d}}}{2}\right )}{\sqrt {-d}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+2)^(1/2)/(d*x^2+3)^(1/2),x)

[Out]

EllipticE(1/3*3^(1/2)*(-d)^(1/2)*x,1/2*2^(1/2)*3^(1/2)*(b/d)^(1/2))*2^(1/2)/(-d)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {b x^{2} + 2}}{\sqrt {d x^{2} + 3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+2)^(1/2)/(d*x^2+3)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*x^2 + 2)/sqrt(d*x^2 + 3), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {b\,x^2+2}}{\sqrt {d\,x^2+3}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2 + 2)^(1/2)/(d*x^2 + 3)^(1/2),x)

[Out]

int((b*x^2 + 2)^(1/2)/(d*x^2 + 3)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {b x^{2} + 2}}{\sqrt {d x^{2} + 3}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+2)**(1/2)/(d*x**2+3)**(1/2),x)

[Out]

Integral(sqrt(b*x**2 + 2)/sqrt(d*x**2 + 3), x)

________________________________________________________________________________________